Phage therapy (Bacteriophage therapy)

Soon after Alexander Fleming’s 1928 discovery of penicillin and the beginning of Western medicine’s widespread use of antibiotics in the 1940s, Fleming himself warned that misuse of these drugs could result in antibiotic-resistant bacteria. As predicted, clinical reports of antibiotic resistance followed, such as the evolution of resistant Mycobacterium tuberculosis in early clinical trials for streptomycin efficacy in treating tuberculosis. Nevertheless, the discovery and development of novel antibiotics flourished for many decades. However, in the latter 20th century, antibiotic discovery slowed, and the alarming increase in rates of antibiotic resistance signaled that the golden age of antibiotics had perhaps

ended. Indeed, aside from three new antibiotic classes discovered between 2005 and 2018, no novel drug classes have been developed since the 1980s. A similar mechanism of action among these newer drugs has led to the potential evolution of cross-resistance in bacteria. While synthetic modifications to some pre-existing antibiotics have temporarily extended their clinical usefulness, this approach has also been selected for broader resistance mechanisms, such as extended-spectrum beta-lactamases, adaptive changes that are perhaps more easily evolved compared to de novo resistance mechanisms.

In 2017, the World Health Organization (WHO) highlighted the particular threat of Gram-negative pathogens resistant to multiple antibiotics. The Discovery, design, and development of new and alternative antibacterial therapies are crucial. This review concerns the therapeutic use of bacteriophage (phage): viruses that exclusively infect bacteria and can act as bactericidal agents. This approach of “phage therapy” is an old idea that is recently regaining popularity. Efforts are buoyed by the development of easier methods for engineering phage for different purposes in biotechnology. Also, the extreme biodiversity of phages in nature can be leveraged for “bioprospecting”: the discovery and development of naturally evolved phages with properties that are ideal for phage therapy use (e.g., Chan et al., 2018). Below we examine the past, present, and future uses of phage therapy, especially addressing how this newly energized field may proceed with modern, rational therapeutic approaches.

Phage Therapy: A Renewed Approach

It has become much easier to define and test phages as antibacterial treatments. Today’s technology allows for low-cost whole-genome sequencing, automated microbe growth monitoring, and effective high-throughput approaches for screening hundreds or even thousands of samples at once. Modern clinical trials should be carefully planned to be safer, more inclusive, and (if possible) produce useful data compared to prior attempts, it is becoming increasingly understood. Phage therapy trials should be double-blinded, placebo-controlled, and comprise large, diverse cohorts. They may also be planned to collect pertinent longitudinal data from clinical isolates. To investigate a variety of basic and clinical microbiology assays, researchers could, for instance, undertake follow-up lab studies and whole-genome sequencing of phage and/or bacteria obtained during treatment. Also, our increased understanding of the human microbiome and its interactions with human immunology warrant closer investigation of possible phage and immune system interactions in clearing infections.

However, one obvious limitation to phage therapy is the inevitable evolution of phage resistance in bacteria. Modern approaches to phage therapy should both acknowledge and capitalize on this certainty. Evolutionary biology describes how genetic trade-offs should be widely observed in biological systems; organisms sometimes evolve one trait that improves fitness (a relative advantage in survival or reproduction) while simultaneously suffering reduced performance in another trait. Phage therapy would thus benefit from utilizing certain phages which select the target bacterial pathogen to suffer specific genetic trade-offs. In particular, if the proximate binding of a lytic phage is known to associate with a virulence factor or mechanism for antibiotic resistance in the target bacteria, this should exert strong selection for the bacteria to mutate or downregulate the phage-binding target(s). This approach should be especially useful in the case of opportunistic bacterial pathogens because the bacteria could evolve reduced virulence or antibiotic resistance and still thrive in a different ecological setting (e.g., soil) as opposed to “arms-race” selection for escalating virulence in an obligate pathogen such as in response to vaccine pressure (e.g., Marek’s disease virus in chickens; Nair, 2005). Thus, this approach to phage therapy should be doubly effective; success is achieved when phage lyses the target bacterium, but also when bacteria evolve phage resistance because they suffer reduced virulence or increased sensitivity to antibiotics. In the following sections, we return to this paradigm of phage-imposed genetic trade-offs.

A phage that requires a virulence factor to attach to and infect a bacterium may select against the expression of that virulence factor. Selection against virulence factors could be multiply effective, as some virulence factors such as capsules have been shown to hide antigenic sites, provide some degree of antibiotic resistance, and prevent phagocytosis by macrophages. Phages that use components of LPS as receptors select against the expression of these components typically resulting in “rough” colony-forming mutants through phase variable expression of LPS, point mutations, or even large chromosomal deletions in LPS biosynthesis genes. While resistant to LPS targeting phage, these bacterial mutants are typically reduced in both fitness and virulence. Selection against other virulence factors that can serve as phage receptors such as adhesins, pili, or secretion systems could prevent bacterial attachment and invasion of epithelial cells.

Certain lytic phages may be more effective in phage therapy because they kill target bacteria while simultaneously imposing strong selection against bacterial virulence or antibiotic resistance when bacteria mutate to avoid phage attack. Phage that uses antibiotic efflux pumps as receptors (red) can select for phage-resistant bacterial mutants with impaired efflux pumps; these phage-resistant bacterial mutants are more sensitive to antibiotics. Phages that bind to structural virulence factors such as a capsular antigen (purple) can select for phage-resistant bacterial mutants that lack the capsule; these non-capsulated phage-resistant mutants are less virulent because they are more easily engulfed by phagocytic cells.

Similarly, phages that attach to an antibiotic efflux pump to infect may select against the expression of the efflux pump, rendering the bacteria more sensitive to antibiotics that were previously effluxed. For example, phage TLS selected for tolC and rfa mutants in E. coli at a typical frequency of 10−5 to 10−6. The TLS-resistant mutants with altered TolC were hyper-sensitive to novobiocin. Additionally, when phage-resistant mutants were selected in the presence of novobiocin, the frequency of recovered mutants decreased 1,000-fold. More recently, it was demonstrated that phage OMKO1 associates with the outer membrane protein M (OprM) of MexAB- and Mex-XY-OprM efflux pumps of the opportunistic pathogen P. aeruginosa. This interaction selects for phage-resistant mutants that are sensitive to antibiotics, as a “genetic trade-off.” Chan et al. demonstrated that phage-resistant mutants, in both lab strains and clinical isolates of P. aeruginosa, were more sensitive to antibiotics, including ceftazidime. This was likely due to mutations or deletions in the operon encoding for the multidrug efflux pump resulting in nonfunctional gene products. Hypothetically, this promising result might also occur in other bacterial pathogens with similar modes of achieving broad antibiotic resistance via homologous or convergent efflux pump mechanisms. Overall, thoughtful consideration of the inevitable evolution of phage resistance during treatment could greatly benefit phage therapy efforts.

Animal Models for Efficacy

Animal studies can help bridge the gap between in vitro studies and the actual clinical application of phage therapy. Unfortunately, most animal models investigate acute infections, which may not be the ideal analog for phage therapy targeting chronic infections in humans. Many of these studies observe best results when phages are applied simultaneously with the bacterial challenge, which will not necessarily be applicable in the clinic. In many cases, no measures were taken to check for the in vivo evolution of phage resistance by bacteria. Also, the comparison of phage treatment to antibiotic treatment or even a combination of phage and antibiotic treatments is only beginning to be investigated in animal models. Nevertheless, animal models provide vitally useful data on the efficacy and safety of phage therapy in living hosts and are crucial for the further development of the approach.

Systemic Infections

Several studies have investigated the efficacy of phage therapy in the treatment of systemic infections. In a gut-derived model of P. aeruginosa sepsis, Watanabe et al. (2007) observed 67% survival of infected mice when phage therapy was administered orally 1 day post-infection. Capparelli et al. (2007) observed that successful protection of mice with a systemic Staphylococcus aureus infection depended on phage dose; Biswas et al. (2002) observed similar results of dose-dependent success in a mouse model of vancomycin-resistant Enterococcus faecium bacteremia. In a systemic disease model of Vibrio vulnificus, successful control of disease was only achieved when bacterial infection and phage treatment were administered simultaneously. The determinants of success for phage therapy to treat systemic infections are likely dependent on multiple factors which need to be thoroughly examined prior to the widespread use of phage as a treatment for sepsis in humans.

Local Infections

Phage therapy for localized infections (e.g., otitis, urinary tract infections, infected burns) is recognized for its potential to entirely circumvent the use of chemical antibiotics. Furthermore, the use of chemical antibiotics for surgical and hospital-acquired infections is limited, as these often constitute the strains with the greatest antibiotic resistance. Watanabe et al. (2007) observed 92% survival of mice with an intraperitoneal P. aeruginosa infection treated simultaneously with phage. A similar study of S. aureus abscesses in mice by Capparelli et al. (2007) enumerated the reduction in bacterial load resulting from phage therapy and observed that phage applied concurrently with bacteria prevented the formation of abscesses. When administered 4 days after bacterial challenge, a single dose of phage resulted in a 100-fold reduction in bacterial load, whereas multiple doses of phage resulted in a 10,000-fold reduction. In a mouse model of P. aeruginosa infection of burn wounds, phage treatment improved the survival rate from 6% in the untreated controls to 88% when phages were administered via intraperitoneal injection 72 h post-infection. In contrast, phage treatment only resulted in 22% or 28% survival when administered subcutaneously or intramuscularly. Further pharmacokinetic studies demonstrated that phage delivered intraperitoneally persisted at higher levels in the liver, spleen, and blood than phage delivered intramuscularly or subcutaneously. Finally, a murine model was used to investigate the ability of phage to treat an E. coli urinary tract infection. Phage administered intraperitoneally 24 h after bacterial challenge resulted in a 100-fold reduction in bacterial load in the kidneys 48 h after phage treatment. The same phage resulted in a significant reduction in bacterial load in an E. coli pneumonia model but was ineffective in an E. coli model of sepsis.

Gastrointestinal Infections

Applying phage therapy to gastrointestinal bacterial infections could potentially reduce or prevent the colonization of virulent bacteria without disrupting the natural gut flora. Galtier et al. (2017) observed that a preventative treatment of phage, 4 days after an adherent-invasive E. coli challenge, was able to reduce bacterial colonization in the gut of dextran sodium sulfate-treated mice and prevented the progression of colitis symptoms. In an insect model of Clostridium difficile colonization, prophylactic treatment with phage 2 h prior to bacterial challenge resulted in 100% survival, while simultaneous administration of phage and bacteria resulted in 72% survival, and phage administration 2 h post bacterial challenge resulted in 30% survival. Yen et al. (2017) observed that prophylactic treatment with a phage cocktail was able to reduce V. cholerae colonization in the small intestine of infant mice when phages were provided 3 and 6 h prior to bacterial challenge. However, phage-resistant bacterial mutants were recovered after treatment, and effects of phage treatment were reduced when administered more than 6 h before bacterial challenge and when mice were challenged with a higher dose of V. cholerae. While the result of prophylactic treatment of gastrointestinal infections with phage is generally favorable, more studies that provide treatment after bacterial challenges, such as Galtier et al. (2017), are needed, as prophylactic treatment is not always possible in the clinic.

Lung Infections

Phage therapy for the treatment of lung infections, particularly chronic lung infections which are common in those with cystic fibrosis (CF), has seen renewed interest recently with the increase in MDR bacteria associated with the lung. Waters et al. (2017) observed complete eradication of a CF strain of P. aeruginosa in mice when two doses of phage were administered intranasally to infected mice 24/36 or 48/60 h after infection. Treatment at 144/156 h post-infection resulted in complete eradication of infection in 70% of mice and a significant reduction in the remaining 30%. In another CF lung infection model, phage treatment significantly improved the survival rate of mice when administered intranasally at 2 h post-infection. Interestingly, a high dose of phage administered 4 days prior to the bacterial challenge provided complete protection to mice, indicating that prophylactic treatment with phage could prevent chronic infections. Semler et al. (2014) investigated different routes of administration of phage in a mouse model of Burkholderia cepacia complex respiratory infection. A 100-fold decrease in bacterial load was observed when phage was administered via nebulization, while no decrease was observed when administered via intraperitoneal injection. Promising results for both prophylactic and curative treatment of lung infections with phage indicate that these types of infections may be a reliable target for effective phage therapy.

Antibiotic and Phage in Combination

While there have been many in vivo studies on the efficacy of phage therapy, not many recent studies have compared the in vivo efficacy of phage therapy to that of antibiotics or even combined phage and antibiotic treatment. Huff et al. (2004) investigated the efficacy of traditional antibiotics, phage treatment, or a combination of both in a head-to-head trial in an E. coli challenge in broiler chickens. The standard of care treatment, enrofloxacin (fluoroquinolone), reduced mortality from 68% in untreated birds to 3%, while phage treatment alone reduced mortality to 15%. Combination therapy of phage and enrofloxacin resulted in no mortality. Similarly, Oechslin et al. (2017) observed that phage in combination with ciprofloxacin resulted in a 10,000-fold greater reduction in bacterial load as compared to phage or ciprofloxacin treatment alone in rats with experimental endocarditis due to P. aeruginosa. Furthermore, they noted that this particular combination of phage and antibiotics resulted in the synergistic killing of P. aeruginosa both in vitro and in vivo. As the future of phage therapy will likely be that of combined therapy with chemical antibiotics, additional studies examining potential synergy between phage and antibiotics both in vitro and in vivo are needed.

Compared to phage therapy studies in vivo animal models, there have been relatively few reports on the clinical use of phage and even fewer controlled clinical trials. 

Phage therapy, long overshadowed by chemical antibiotics, is garnering renewed interest in Western medicine. This stems from the rise in frequency of multi-drug-resistant bacterial infections in humans. There also have been recent case reports of phage therapy demonstrating clinical utility in resolving these otherwise intractable infections. Nevertheless, bacteria can readily evolve phage resistance too, making it crucial for modern phage therapy to develop strategies to capitalize on this inevitability. Here, we review the history of phage therapy research. We compare and contrast phage therapy and chemical antibiotics, highlighting their potential synergies when used in combination. We also examine the use of animal models, case studies, and results from clinical trials. Throughout, we explore how the modern scientific community works to improve the reliability and success of phage therapy in the clinic and discuss how to properly evaluate the potential for phage therapy to combat antibiotic-resistant bacteria.

References

Heinz et al., 2018
E. Heinz, H. Ejaz, J. Bartholdson-Scott, N. Wang, S. Guanjaran, D. Pickard, J. Wilksch, H. Cao, I. ul-Haq, G. Dougan, R. Strugnell
The emergence of carbapenem, beta-lactamase inhibitor, and cefoxitin-resistant lineages from a background of ESBL-producing Klebsiella pneumonia and K. quasipneumoniae highlights different evolutionary mechanisms
bioRxiv (2018), p. 283291, 10.1101/283291
Hershey and Chase, 1952
A.D. Hershey, M. Chase
Independent functions of viral protein and nucleic acid in the growth of bacteriophage
J. Gen. Physiol., 36 (1952), pp. 39-56
Ho, 2001
K. Ho
Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era
Perspect. Biol. Med., 44 (2001), pp. 1-16
Hover et al., 2018
B.M. Hover, S.H. Kim, M. Katz, Z. Charlop-Powers, J.G. Owen, M.A. Ternei, J. Maniko, A.B. Estrela, H. Molina, S. Park, et al.
Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens
Nat. Microbiol., 3 (2018), pp. 415-422
Hoyle et al., 2018
N. Hoyle, P. Zhvaniya, N. Balarjishvili, D. Bolkvadze, L. Nadareishvili, D. Nizharadze, J. Wittmann, C. Rohde, M. Kutateladze
Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report
Res. Microbiol., 169 (2018), pp. 540-542
Huff et al., 2004
W.E. Huff, G.R. Huff, N.C. Rath, J.M. Balog, A.M. Donoghue
Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers
Poult. Sci., 83 (2004), pp. 1944-1947
Jault et al., 2018
P. Jault, T. Leclerc, S. Jennes, J.P. Pirnay, Y.A. Que, G. Resch, A.F. Rousseau, F. Ravat, H. Carsin, Le, R. Floch, et al.
Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial
Lancet Infect. Dis., 19 (2018), pp. 35-45
Jennes et al., 2017
S. Jennes, M. Merabishvili, P. Soentjens, K.W. Pang, T. Rose, E. Keersebilck, O. Soete, P.M. François, S. Teodorescu, G. Verween, et al.
Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report
Crit. Care, 21 (2017), p. 129
Kaper et al., 2004
J.B. Kaper, J.P. Nataro, H.L. Mobley
Pathogenic Escherichia coli
Nat. Rev. Microbiol., 2 (2004), pp. 123-140
Khawaldeh et al., 2011
A. Khawaldeh, S. Morales, B. Dillon, Z. Alavidze, A.N. Ginn, L. Thomas, S.J. Chapman, A. Dublanchet, A. Smithyman, J.R. Iredell
Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection
J. Med. Microbiol., 60 (2011), pp. 1697-1700
Kim and Ryu, 2011
M. Kim, S. Ryu
Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar typhimurium and Escherichia coli
Appl. Environ. Microbiol., 77 (2011), pp. 2042-2050
Kim and Ryu, 2012
M. Kim, S. Ryu
Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium
Mol. Microbiol., 86 (2012), pp. 411-425
Knezevic et al., 2013
P. Knezevic, S. Curcin, V. Aleksic, M. Petrusic, L. Vlaski
Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa
Res. Microbiol., 164 (2013), pp. 55-60
Krestownikowa and Gubin, 1925
Krestownikowa, W., & Gubin, W. (1925). Die Verteilung and die Ausscheidung von Bak-teriophagen im Meerschweinchen-organismus bei subkutaner Applicationsart. J. Microbiol., Patolog. i. Infekzionnich bolesney, 1, 3.
Krueger and Scribner, 1941
A.P. Krueger, E.J. Scribner
The bacteriophage: Its nature and its therapeutic use
J. Am. Med. Assoc., 116 (1941), pp. 2269-2277
Kudrin et al., 2017
P. Kudrin, V. Varik, S.R.A. Oliveira, J. Beljantseva, T. Del Peso Santos, I. Dzhygyr, D. Rejman, F. Cava, T. Tenson, V. Hauryliuk
Sub-inhibitory concentrations of bacteriostatic antibiotics induce relA-dependent and relA-independent tolerance to β-lactams
Antimicrob. Agents Chemother., 61 (2017), p. e02173-16
Kutateladze and Adamia, 2010
M. Kutateladze, R. Adamia
Bacteriophages as potential new therapeutics to replace or supplement antibiotics
Trends Biotechnol., 28 (2010), pp. 591-595
Labrie et al., 2010
S.J. Labrie, J.E. Samson, S. Moineau
Bacteriophage resistance mechanisms
Nat. Rev. Microbiol., 8 (2010), pp. 317-327
LaVergne et al., 2018
S. LaVergne, T. Hamilton, B. Biswas, M. Kumaraswamy, R.T. Schooley, D. Wooten
Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection
Open Forum Infect. Dis., 5 (2018), p. ofy064
Le et al., 2014
S. Le, X. Yao, S. Lu, Y. Tan, X. Rao, M. Li, X. Jin, J. Wang, Y. Zhao, N.C. Wu, et al.
Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa
Sci. Rep., 4 (2014), p. 4738
León and Bastías, 2015
M. León, R. Bastías
Virulence reduction in bacteriophage resistant bacteria
Front. Microbiol., 6 (2015), p. 343
Leung and Weitz, 2017
C.Y.J. Leung, J.S. Weitz
Modeling the synergistic elimination of bacteria by phage and the innate immune system
J. Theor. Biol., 429 (2017), pp. 241-252
Ling et al., 2015
L.L. Ling, T. Schneider, A.J. Peoples, A.L. Spoering, I. Engels, B.P. Conlon, A. Mueller, T.F. Schäberle, D.E. Hughes, S. Epstein, et al.
A new antibiotic kills pathogens without detectable resistance
Nature, 517 (2015), pp. 455-459
Loc-Carrillo and Abedon, 2011
C. Loc-Carrillo, S.T. Abedon
Pros and cons of phage therapy
Bacteriophage, 1 (2011), pp. 111-114
Luria and Delbrück, 1943
S.E. Luria, M. Delbrück
Mutations of bacteria from virus sensitivity to virus resistance
Genetics, 28 (1943), pp. 491-511
Marshall et al., 1948
G. Marshall, J.W.S. Blacklock, C. Cameron, N.B. Capon, R. Cruickshank, J.H. Gaddum, et al.
STREPTOMYCIN treatment of pulmonary tuberculosis
BMJ, 2 (1948), pp. 769-782
McVay et al., 2007
C.S. McVay, M. Velásquez, J.A. Fralick
Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model
Antimicrob. Agents Chemother., 51 (2007), pp. 1934-1938
Merril et al., 1996
C.R. Merril, B. Biswas, R. Carlton, N.C. Jensen, G.J. Creed, S. Zullo, S. Adhya
Long-circulating bacteriophage as antibacterial agents
Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 3188-3192
Messenger et al., 1999
S.L. Messenger, I.J. Molineux, J.J. Bull
Virulence evolution in a virus obeys a trade-off
Proc. Biol. Sci., 266 (1999), pp. 397-404
Mindich et al., 1976
L. Mindich, J.F. Sinclair, J. Cohen
The morphogenesis of bacteriophage φ6: particles formed by nonsense mutants
Virology, 75 (1976), pp. 224-231
Morello et al., 2011
E. Morello, E. Saussereau, D. Maura, M. Huerre, L. Touqui, L. Debarbieux
Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention
PLoS ONE, 6 (2011), p. e16963
Nair, 2005
V. Nair
Evolution of Marek’s disease — a paradigm for incessant race between the pathogen and the host
Vet. J., 170 (2005), pp. 175-183
Nale et al., 2016
J.Y. Nale, M. Chutia, P. Carr, P.T. Hickenbotham, M.R. Clokie
‘Get in early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages
Front. Microbiol., 7 (2016), p. 1383
Oechslin et al., 2017
F. Oechslin, P. Piccardi, S. Mancini, J. Gabard, P. Moreillon, J.M. Entenza, G. Resch, Y.A. Que
Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence
J. Infect. Dis., 215 (2017), pp. 703-712
Pires et al., 2016
D.P. Pires, S. Cleto, S. Sillankorva, J. Azeredo, T.K. Lu
Genetically engineered phages: a review of advances over the last decade
Microbiol. Mol. Biol. Rev., 80 (2016), pp. 523-543
Riding, 1930
D. Riding
Acute Bacillary Dysentery in Khartoum Province, Sudan, with Special Reference to Bacteriophage Treatment: Bacteriological Investigation
J. Hyg. (Lond.), 30 (1930), pp. 387-401
Roach et al., 2017
D.R. Roach, C.Y. Leung, M. Henry, E. Morello, D. Singh, J.P. Di Santo, J.S. Weitz, L. Debarbieux
Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen
Cell Host Microbe, 22 (2017), pp. 38-47.e4
Rohwer et al., 2014
F. Rohwer, M. Youle, H. Maughan, N. Hisakawa
Life in Our Phage World: A Centennial Field Guide to the Earth’s Most Diverse Inhabitants
Wholon (2014)
Samson, 2005
I. Samson
A new class of antimycobacterial drugs: the diarylquinolines
Thorax, 60 (2005), p. 495
Sarker et al., 2016
S.A. Sarker, S. Sultana, G. Reuteler, D. Moine, P. Descombes, F. Charton, G. Bourdin, S. McCallin, C. Ngom-Bru, T. Neville, et al.
Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh
EBioMedicine, 4 (2016), pp. 124-137
Sarker et al., 2017
S.A. Sarker, B. Berger, Y. Deng, S. Kieser, F. Foata, D. Moine, P. Descombes, S. Sultana, S. Huq, P.K. Bardhan, et al.
Oral application of Escherichia coli bacteriophage: safety tests in healthy and diarrheal children from Bangladesh
Environ. Microbiol., 19 (2017), pp. 237-250
Schooley et al., 2017
R.T. Schooley, B. Biswas, J.J. Gill, A. Hernandez-Morales, J. Lancaster, L. Lessor, J.J. Barr, S.L. Reed, F. Rohwer, S. Benler, et al.
Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection
Antimicrob. Agents Chemother., 61 (2017), p. e00954-17
Seed et al., 2012
K.D. Seed, S.M. Faruque, J.J. Mekalanos, S.B. Calderwood, F. Qadri, A. Camilli
Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1
PLoS Pathog., 8 (2012), p. e1002917
Semler et al., 2014
D.D. Semler, A.D. Goudie, W.H. Finlay, J.J. Dennis
Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections
Antimicrob. Agents Chemother., 58 (2014), pp. 4005-4013
Sexton et al., 2017
J.P. Sexton, J. Montiel, J.E. Shay, M.R. Stephens, R.A. Slatyer
Evolution of ecological niche breath
Annu. Rev. Ecol. Evol. Syst., 48 (2017), pp. 183-206
Smith, 1924
J. Smith
The bacteriophage in the treatment of typhoid fever
BMJ, 2 (1924), pp. 47-49
Smith and Huggins, 1982
H.W. Smith, M.B. Huggins
Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics
J. Gen. Microbiol., 128 (1982), pp. 307-318
Smith and Huggins, 1983
H.W. Smith, M.B. Huggins
Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs
J. Gen. Microbiol., 129 (1983), pp. 2659-2675
Smith et al., 1987
H.W. Smith, M.B. Huggins, K.M. Shaw
Factors influencing the survival and multiplication of bacteriophages in calves and in their environment
J. Gen. Microbiol., 133 (1987), pp. 1127-1135
Soothill, 1992
J.S. Soothill
Treatment of experimental infections of mice with bacteriophages
J. Med. Microbiol., 37 (1992), pp. 258-261
Spellberg et al., 2008
B. Spellberg, R. Guidos, D. Gilbert, J. Bradley, H.W. Boucher, W.M. Scheld, J.G. Bartlett, J. Edwards Jr., Infectious Diseases Society of America
The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America
Clin. Infect. Dis., 46 (2008), pp. 155-164
Stearns, 1989
S.C. Stearns
Trade-offs in life-history evolution
Funct. Ecol., 3 (1989), pp. 259-268
Summers, 1993
W.C. Summers
Cholera and plague in India: the bacteriophage inquiry of 1927-1936
J. Hist. Med. Allied Sci., 48 (1993), pp. 275-301
Theriot and Young, 2015
C.M. Theriot, V.B. Young
Interactions between the gastrointestinal microbiome and Clostridium difficile
Annu. Rev. Microbiol., 69 (2015), pp. 445-461
Torres-Barceló and Hochberg, 2016
C. Torres-Barceló, M.E. Hochberg
Evolutionary rationale for phages as complements of antibiotics
Trends Microbiol., 24 (2016), pp. 249-256
Turner and Chao, 1998
P.E. Turner, L. Chao
Sex and the evolution of intrahost competition in RNA virus φ6
Genetics, 150 (1998), pp. 523-532
Twort, 1915
F.W. Twort
An investigation on the nature of ultra-microscopic viruses
Lancet, 186 (1915), pp. 1241-1243
Vinga et al., 2012
I. Vinga, C. Baptista, I. Auzat, I. Petipas, R. Lurz, P. Tavares, M.A. Santos, C. São-José
Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection
Mol. Microbiol., 83 (2012), pp. 289-303
Wasik and Turner, 2013
B.R. Wasik, P.E. Turner
On the biological success of viruses
Annu. Rev. Microbiol., 67 (2013), pp. 519-541
Watanabe et al., 2007
R. Watanabe, T. Matsumoto, G. Sano, Y. Ishii, K. Tateda, Y. Sumiyama, J. Uchiyama, S. Sakurai, S. Matsuzaki, S. Imai, K. Yamaguchi
Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice
Antimicrob. Agents Chemother., 51 (2007), pp. 446-452
Waters et al., 2017
E.M. Waters, D.R. Neill, B. Kaman, J.S. Sahota, M.R. Clokie, C. Winstanley, A. Kadioglu
Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa
Thorax, 72 (2017), pp. 666-667
World Health Organization, 2017
World Health Organization
WHO Publishes List of Bacteria for which New Antibiotics Are Urgently Needed
WHO (2017)
Wright et al., 2009
A. Wright, C.H. Hawkins, E.E. Anggård, D.R. Harper
A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy
Clin. Otolaryngol., 34 (2009), pp. 349-357
Yen et al., 2017
M. Yen, L.S. Cairns, A. Camilli
A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models
Nat. Commun., 8 (2017), p. 14187

About the author

Hello there!

I'm Raphael Hans Lwesya. I have a deep interest in phage research and science communication. I strive to simplify complex ideas and present the latest phage-related research in an easy-to-digest format. Thank you for visiting The Phage blog. If you have any questions or suggestions, please feel free to leave a comment or contact me at [email protected].

Leave a Reply

Receive the latest news

Subscribe To Our Weekly Newsletter

Get notified about new articles